A Novel Test for Gene-Ancestry Interactions in Genome-Wide Association Data

نویسندگان

  • Joanna L. Davies
  • Jean-Baptiste Cazier
  • Malcolm G. Dunlop
  • Richard S. Houlston
  • Ian P. Tomlinson
  • Chris C. Holmes
چکیده

Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into "ancestry groups" and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice

Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...

متن کامل

Genome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis

Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...

متن کامل

Gene and Metabolic Environment Interactions in Obesity and Diabetes

Since 2007, genome-wide association studies (GWAS) have contributed to a major leap forward in understanding the genetic basis of obesity and diabetes [1–4]. To date, 37 genetic loci associated with obesity or body mass index (BMI) have been identified through these GWAS which were predominantly in populations of European ancestry. We conducted a meta-analysis of associations between BMI and ap...

متن کامل

Population Stratification in the Context of Diverse Epidemiologic Surveys Sans Genome-Wide Data

Population stratification or confounding by genetic ancestry is a potential cause of false associations in genetic association studies. Estimation of and adjustment for genetic ancestry has become common practice thanks in part to the availability of ancestry informative markers on genome-wide association study (GWAS) arrays. While array data is now widespread, these data are not ubiquitous as ...

متن کامل

Novel probabilistic models of spatial genetic ancestry with applications to stratification correction in genome-wide association studies

Motivation Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012